SUDUT BERELASI PADA KUADRAN I, II, III, IV (RUMUS DAN CONTOH SOAL)
Rumus Sudut Berelasi
Dengan memanfaatkan sudut-sudut relasi, kita dapat menghitung nilai perbandingan pada trigonometri untuk sudut pada kuadran lainnya, termasuk sudut yang lebih dari 360° dan sudut negatif.
Sudut Berelasi di Kuadran I
Untuk α = sudut lancip, maka (90° − α) merupakan sudut-sudut kuadran I. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :
sin (90° − α) = cos α
cos (90° − α) = sin α
tan (90° − α) = cot α
Sudut Berelasi di Kuadran II
Untuk α = sudut lancip, maka (90° + α) dan (180° − α) merupakan sudut-sudut kuadran II. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :
sin (90° + α) = cos α
cos (90° + α) = -sin α
tan (90° + α) = -cot α
sin (180° − α) = sin α
cos (180° − α) = -cos α
tan (180° − α) = -tan α
Sudut Berelasi Kuadran III
Untuk α = sudut lancip, maka (180° + α) dan (270° − α) merupakan sudut kuadran III. Dalam trigonometri, relasi sudut dinyatakan sebagai berikut :
sin (180° + α) = -sin α
cos (180° + α) = -cos α
tan (180° + α) = tan α
sin (270° − α) = -cos α
cos (270° − α) = -sin α
tan (270° − α) = cot α
Sudut Berelasi Kuadran IV
Untuk α = sudut lancip, maka (270° + α) dan (360° − α) merupakan sudut kuadran IV. Dalam trigonometri, relasi sudut-sudut dinyatakan sebagai berikut :
sin (270° + α) = -cos α
cos (270° + α) = sin α
tan (270° + α) = -cot α
sin (360° − α) = -sin α
cos (360° − α) = cos α
tan (360° − α) = -tan α
Ada 2 hal yang harus diperhatikan, yaitu sudut relasi yang dipakai dan tanda untuk tiap kuadran.
Untuk relasi (90° ± α) atau (270° ± α), maka :
sin → cos
cos → sin
tan → cot
Sedangkan untuk relasi (180° ± α) atau (360° ± α), maka :
sin = sin
cos = cos
tan = tan
Tanda masing-masing kuadran
Kuadran I (0 − 90°) = semua positif
Kuadran II (90° − 180°) = sinus positif, lainnya negatif
Kuadran III (180° − 270°) = tangen positif, lainnya negatif
Kuadran IV (270° − 360°) = cosinus positif, lainnya negatif
Komentar
Posting Komentar